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S.ZTa. SEKEXZH-ZEN'KQVTGB 

Investigation of the differential aperatoz, to which many problen~s of the linear 
theory of waves 2.n stratified fluid are reduced, is considered. A singularity of 
this operatow is that in it t?le higher time derivative appears in the same term as 
the higher derivatives with respect to coordinakes. 

An operator of the considered here type appeared for the ffrst 'time in the equationderive 
by Sobolev /1/ inthecourse of investigation of unsteady motions of a rotating fluid, Some 
extensions of Sabolev's equation were considered in /.X--4/ and other publications. 

below* we use the theory of generalized functions for constructing the fundamental aoLu- 
tion of the internai Wave operator, and explain its hydxadynamic meaning. A slummaryufobtained 
results appeared in is/. 

1. Statement of the prablem* The Fourier transform of the ~u~~a~~~t~~ 
solution. Consider the operatar 

N =-g & d- PA, il.11 

t&t defines in linear and the Boussinesq appxoximations the pxocess of internal wave propaga- 
tion in a continuously stratifled fluid. In this formula t is the time, d, ks a three dim- 
ensional LapLace operator of space coordinates %,%. $3, A, is a two dimens ional Laplace 
operator of the horizontal coordinates % and %+ i\r is the so-called Brunt-VVBis;il.S. frequency 
which defines density distribution in an inhomogeneous fluid. It is usually assumed that the 
fluid density p0 in the unpertuxbed state depends only on the vertical coordinate ~~1 then, 
when the z3-axls is directed against the gravity acceleration If, JP = --+il)&&x~, Below,we 
assume that N2 = coast > 0. This coarresponds to steady exponential stratification and closely 
conforms with labaratbry experiments. Operator N that corresponds to such stretificatknwill 
be called the operator of internal waQes. 

Let us derive the fundamental solution E& tf of the internal. wave operator. By defini- 
tion E(x) t) is a generalize6 function /6/ that satisfies the equation 

NE: = 6 (z, t) (L.2) 

in whose right-hand side we have the Dirac &-function, and S= (glt ~a, ~a) is a point in the 
three-dimensional Euclidean space Aa. 

Restricting WY investigation to the space S'(IP) of slow growing generalized functions, 
we shall use for +he constructLon of &'@,f) the method of the Fourier transform Fl, in space 

variables zj. 
Applying FS to Eq. IL.21, we obtain for the Fourirs transfam E*(&t) of fumction&z,1) 

the equation 

-igil~-n.a(h"_trs*)E* = 1 GJS 01, / $I = w-i- bai58v’ 

one of: whose solutions in 8" is the function 

E'*(&t) ~ __. &$ ain fQ(FiLI 
I Ef” ‘v EEI 

I Yf%f== 
N?_ 

IT! 

W+tl@LX @(iI is the Heaviside unit function. 
Locally integrable functions and the generated by them in conformity with conventional 

rule generalized functions are identified in the last formula. 
We call the generalized function 

E -(;t, i) =E Fk-" IF1 
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S; &* (5, t)-t6* (%,t) as y -+ 0, we determine Fg-'[E,*j andthencalculate the transform Pc"'(E*j 

using the passing to limit and the continuity of the Fourier transform in space 8'. The der- 

ived fundamental solution proves to be a regular generalized function. 

2. Introduction of functions x,*(%, t). We introduce the set of functions 

G* (%7 t) = I?+ (E, 2) exp (-y i E I) 

where y is a positive parameter. 
It can be shown that in S' 

lim E,* (%, t) = E* (E, t), y-+ + 0 

For each basic function e(E,f)=S and any positive number C we have 

(2.11 

(2.2) 

Let E be an arbitrary positive mfnber. we fix rp(E,f). Since rp=S, it is possible to 

indicate a number C>O such that 

C-‘* fts,(t,t)Jd~dt<+ 

h I 

Then 

We select T~YO>O so that the inequality 

is satisfied for ~=(O,yo), 
Then for y E (0,~~) 

and, consequently, taking into account (2.3)) we obtain l~~*,~)-{~~*,~)l<E. 

3. Functions E, (x, t) and theZr majorants. Let us determine the inverse Fourier 
transform 

Ep (ce, t) = FE-1 rq*1 

By virtue of the absolute integrability of Eva&t) we have 

E,= (2%)-S E*exPI-yy%El--(~,%)l~~ (x*5)- Q%z -!- %a -i-G%8 
* 

Substituting for function E*its expression (2.11, passing to spherical coordinates @,cp,%, 
and taking into account the integrand pexiodicity with respect to tp, we obtain 

(3.1.) 
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where function Hz((P, 0; r*%) differs from H1 only by the sign at X,COS@. 
Assuminq that the inequality 

rZO (3.2) 

holds, we transform formula (3.1) in two ways. 
First, we substitute integration over the circle iz I== 1 in the plane of the complex 

variable s for integration with respect to cp. Then 

%b; xt 7’1 = z* + 2 1~’ f i (-- i)j x1 z - 1; j = 0, 1, f=L, 
rSlIl6 

x=+tge 

Calculation of the internal integral using the theory of residues yields 

(3.3) 

where 207 za and zl, zg are pairs of roots of equations 

20 (2, x, Y') = 0, 2, (2; x, y') = 0 

respectively, and Iz,l<l and Izll-=zl. 
We introduce the notation 

A = 1 -j- fe -x2, B = 2 xy’ 

Then for roots 20 and 2% we have 

zj-_-yY'--~(-- 1)jx+(A'+Ba)r*exp[~(--)j x ~sret&++(1--sgn~)]) 

and similar expressions but with the opposite sign at the term (AZ-i- geyjr for roots 2% and 
ZS. 

Substituting these expxessions for roots 21 into (3.3) and passing to integration with 

respect to u = sin 6, after simple transformations, we obtain 

(3.4 

H (u) = P-’ (P + K)‘k K (u) = 12 -I- (y* - x2) I 1~1’ 

P (ZJ) = (A? + Lay’*, L (24) = 2yz, I z 1-8 f1T 

Let us now transform formula (3.1) in another way. Substituting the variable %=: sinq 
for the variable of integration p , we obtain 

1 

E, (x, t) = - -$& j n’a sin(NtsinB) dB x 
sin 8 s 

I( z-x -+ iy’)_’ + (z + x + iy’)_‘l & 
0 -1 

(3.5) 

Taking into account the inequality 

IsT X -I- ir' 1 > y' 

we conclude on the basis of the last formula that 

I'& (5, t) I Q (8 Jmv, r + 0, y rf 0 

i.e. Ey(z,t) are bounded locally integrable functions when y#O and condition (3.21 are 

satisfied. 
Let us transform formula (3.5). Carrying in it integration with respect to 2, for in- 

stance, using the theory of residues, we finally obtain 

E, (~1 t) = m ( cl(f) Ica sin \;;Be’* @ ([i - (x - ~y’)l]% ;t [I - (-x - iy’)y”qde 

0 

(3.6) 
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where the branch of root 1/i - 0' has been chosen as follows: a slit has been affected in 

the o-plane between points o= --1 and o=l, and it assumed that 

v/1 - oa=v/Z when 0 = i 

It can be shown that functions E,(x,t) have a local integrable majorant. 

Let us, first, assume that Y>,]QI. Then, taking into account that for real a and b 

) (a + ib)“’ I> 1 a I”. 

we obtain from (3.6) 

1 E, (q t) 1 < & 3’ 1 I - x2 + y’* I-‘/*de = &- 7 (I z 1% . a t 

II 0 
sin 0 + yB- 232)+* sinEI& < 4n lz, 

Let now y<]s,]. We split the integration interval with respect to 0 in formulas (3.5) 

and (3.6) in three intervals ]Ij, Ij+lIt where j = 0, 1, 2; lo = 0, 13 = n/2, 1, = arcsin m,, I, = arcsin nz2 

ml=~z3~--y~/I.I, %=I~sl1151 I and represent the respective integrals as the sum of three in- 

tegrals J,,J,, and J3. Let us estimate each of them. 

For estimating integrals J1 and J, we use formula (3.6). We have 

x3* - ya - I r 12 sina EI]"" sin e df3 < - 
I, 

’ 2n']z] s 
[(u* -ml) (i - US)]+ u du = &- 

nl* 

and for estimating integral J, we use formula (3.5); then 

From the derived estimates we obtain for functions E,,(z,t) the majorant 

I E, (z, t) I < Ctlr, c = const (3.7) 

which is valid for all y>O and all z that satisfy condition (3.2). 

4. Passage to limit in #'as r++O. Let us prove that the sought fundamental solu- 

tion of the operator N, which is the limit of functions E,(x,t) as y+ +O in the S' space, 

can be defined by formula 

E(x,t)=-* s [(~a--x~a/l xla)( 1 - ua)]+ sin Ntu &L 

lxrl/l~l 

(4.1) 

For this it is sufficient to prove that the sequence of functions E,(x,t) converges to 

function E(z,t) almost everywhereimas y-+ $0. 
If the indicated convergence takes place, then, taking into account the presence in func- 

tions E,(x,t) of the locally integrable majorant, it is possible to apply for any basic func- 

tion m(x,t)~ S the Lebesgue theorem on the passing to limit in the integrand, according to 
which 

lim 
! 

E, (x, t) cp (x, t) do dt = 
ii 

E (2, t) CP (2, t) C&J dt 
y-+0 * 4 

This equality by virtue of the local integrability of functions E,(x,t) and E (x, t) means 

that function E(x, t) is the limit of functions &(x,t) in the space St, as y+ $0. 
We shall show that functions E,,(z,f) and E(z,t) converge almost everywhere. We assume 2 

and t to be fixed with n3#O, and only consider values of y that are smaller than ]+]/v/2; 

Let us estimate IE,,b.f) -Ek, t) I. Using formula (3.4) we obtain 

(4.2) 
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We represent the integral over the interval [O,m,] as the sum of three integrals J1, J,, 
and Jo, respectively, over the intervals IO, m, (i - ql)l,]ml (1 -Q), ml] , and [ml,mJ , where ?t 
is the positive number smaller than unity, selected below, and shall estimate each integral 
separately. 

When estimating integral J, we take into account that in the integration interval the 
inequalities 

are satisfied, and by virtue of these 

I J( I< VT y (n I IS I)-% N-l(2%- ‘h2)-+ T’I an Ntu I du < v?i N-lra I z I-1 (2q1 - t),a)+ I z8 I-1 y 

Note that in the case of integral J, 

(4.3) 

I R I < 1 L I-1 (P - I K I)“’ < (2 ) K I)“” = 2+ (ml2 - Ua)-"a 

from which 

m, 
t 

lJ”Idzr s 
u (m;d - ~‘)-“‘du < (2)A’%-%-ltmz(Q)‘l’ < (2)A"ts-'r-l (a)" (4.4) 

rnr(l-Ill) 

For estimating integral Je we use the first of the previously derived inequalities for 

J, . We obtain 

t t 
I Js I < py ((1 - ~9” - (1 - ~~*)‘~“I \( ~ Y (4.5) 

We represent the integral in (4.2) over the interval [~,i] in the form of the sum of in- 

tegrals J, and J, over the intervals [~,rn,+~] and [mz+~,,l] , respectively, where % is 

the positive number smaller than unity, selected below. 

We estimate integral J, taking into account the inequalities 

1 H I < JaP-“2 Q 1/2-l K I-“. < Jc(L2 - m2T” 
We obtain 

(4.6) 

When considering integral J, we use the inequalities 

by virtue of which we successively have 

from which 

I H - V2b2 - m2Y”I < 7);s 1 (P + K)‘/Z ($ - m12)‘/r - 1/yp I< 

2-"'q2-5 1 (P + K) (K - y2 1 t l-2) 

2-%a-6 (3&Z + 2?2 I .z I-ZP)\< 
- 2pz , = 

2-“Q (12yZ 12 I-2 + 292 I z 1-y Q 7qz-b 12 I-Py8 

]J, ] < 7(2)-*'%k~] 2 l-3 ty*n-2 u (1 -IL+ du < (2)%k-b] z I-sty* (4.7) 

Assume now that (z,t) is a fixed point in the Euclidean space R’ whose coordinates satisfy 

only the condition zsr#O, being otherwise arbitrary; let also E be an arbitrary positive 

number. Then, by virtue of (4.4) and (4.6), it is possible to find numbers q1 and % such 

that for any YE[O,]Z~]/JQJ the inequality 

I J, I + I’J, I < e/2 
(4.8) 

is satisfied. 
By virtue of estimates (4.3), (4.51, and (4.7) it is possible to indicate for these num- 

bers ql and 'la such YO that the inequality 

I J, I + I J, I + I J, I < e/2, VY E [O, rol (4.9) 
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is satisfied. 

From (4.8), (4.9), and (4.4) follows that 

I E, (2, t) - E (z, d I< 8, 9 E lo9 VI 

which shows that as y-+ +O the sequence of functions E,(z,t) converges to E (~7 t) almost 

everywhere 

5. The hydrodynamic meaning of the fundamental solution. It follows from (4.1) 

that the derived fundamental solution of the operator of internal waves has the following 

properties: 

E(r,t)=w=O for t<O 

aE (2, t) 1 
E(x,t)+O, at+-- *nIxI 

for t++O in D'(Ra) 

@'is the space of generalized Sobolev-Schwartz functions which enable us to establish,with 

allowance for Eq.(1.2), clearly the hydrodynamic meaning of function E(x, t)). 

Consider a continuously stratified fluid unbounded in all directions at rest at t<o 

whose density P,,(Q) is distributed in conformity with the law described in Sect.1. Particles 

of the fluid are assumedto acquire at instant of time t=O velocities defined by vector 

V(X, 0) whose components along axes xl, x2, x3 are 

This results in that at t> 0 internal waves begin to propagate in the fluid. This manifests 

itself in particular in that equal density surfaces (isopycs) cease to be horizontal planes. 

In the linear theory and the Boussinesq approximation function E(x,t) determines the 

isopyc's displacement at point x and instant of time t, while dE(s,t)/at determines the vert- 

ical velocity component us (27 t) of the fluid. 

Using formula (4.1) we can observe the properties of internal waves at large dimension- 

less times Nt. Using conventional methods we derive from (4.1) for Nt+ 00 the asymptotic 

formula 

(5.1) 

which implies that we have a superposition of two types of waves. 

First, there are standing waves defined by the second term in brackets. These waves are 

axially symmetric of infinite length and a frequency equal to the Brent-Viaisial frequency 

N, and with an amplitude decreasing with time as l/vNji. 
Then there are progressing waves defined by the first term in brackets in formula (5.1). 

These waves are also axially symmetric. Their surfaces of equal phase are conic surfaces 

IzQ I/ 15 I= const whose angular velocity is x,/(rt) which decreases with time; at a fixed in- 

stant of time the maximum of its absolute value lies near the vertical .x,-axis, and the sign 

of its angular velocity coincides with the sign of x3. With increasing time the number of 

such conic waves increases and their angular length correspondingly decreases. 

These properties of waves are in accord with published laboratory experiments /7/ on in- 

ducing internal waves in a vessel containing linearly stratified fluid by impartinganinitial 

velocity to fluid particles by a rapid movement over a short distance of a solid body of di- 

mensions that are small in comparison with those of the vessel. 

The amplitude of progressing waves decreases in the course of time as llJ07, 
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