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CONSTRUCTION OF THE FUNDAMENTAL SOLUTION FOR THE OPERATOR
OF INTERNAL WAVES”

S.Ila. SEKERZH~ZEN'KOVICH
Investigation of the differential operator, to which many problems of the linear
theory of waves in stratified f£luid are reduced, is considered. A singularity of
this operator is that in it the higher time derivative appears in the game term as
the higher derivatives with respect to coordinates.

An operater of the considered here type appeared for the first time in the equationderive
by Sobolev /1/ inthe course of investigation of unsteady motions of a rotating fluid.  Some
extensions of Sobolev's equation were considered in /2— 4/ and other publications.

Below, we use the theory of generalized functions for constructing the fundamental solu-
tion of the internal wave operator, and explain its hydrodynamic meaning. A summary of obtained
results appeared in /5/.

1. Statement of the problem. The Fourier transform of the fundamental
solution. Consider the operator

4 i
N Ay + A2, 1.1y

that defines in linear and the Boussinesq approximations the process of internal wave propaga-
tion in a continuously stratified fluid. In this formula ! is the time, 4; is a three dim-
ensional Laplace operator of space coordinates i, %3, %3 A, is a two dimensional  Laplace
operator of the horizontal cooxdinates 1 and %3, N is the so-called Brunt— Vdis3ld frequency
which defines density distribution in an inhomogeneous fluid. It is usunally assumed that the
fluid density go in the unperturbed state depends only on the vertical coordinate Zq: then,
when the Tg-axis is directed against the gravity acceleration g, N? == —glp,dp,/dz,. Below, ve
assume that N? = comst > 0. This corresponds to steady exponential stratification and closely
conforms with laboratory experiments. Operator N that corresponds to such stratification will
be called the operator of internal waves.

Let us derive the fundamental solution K (2,1} of the internal wave operator. By defini-
tion E (z, t) is a generalized function /6/ that satisfies the eguation

NE = § (z, 1) (1.2}

in whose right-hand side we have the Dirac §-function, and & = (&, %y #3) is @ point in the
three-dimensicnal Buclidean space RS,

Restricting our investigation to the space S8'(R% of slow growing generalized functions,
we shall use for the construction of E {z, t) the method of the Fourler transform F, in space
variables zj.

Applying F, to Eg.(L.2), we obtain for the Fourier transform ZE*(, 1) of function £{z,1)
the equation

QA E N
- [E ““'gi —NEESH B Er=1(5)80), [El=(E & +ENT
one of whose solutions in &' is the function

E* (L f) o . 20 sin[v(E)e] . NVETTEE
GO=—Tgr—m - O e

where O{) is the Heaviside unit function.

Locally integrable functions and the generated by them in conformity with conventional
rule generalized functions are identified in the last formula.

We call the generalized function

E Az, &) = FyULEY]

the fundamental solution of the internal wave operator.

For the determination of g1 [f+] we proceed as follows. We introduce the set of auxil-
liary functions £y*(, 1) that contain the positive parameter Y and whose property is thatin
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Fundamental solution for the operator of internal waves 193

S, E*(E, )~ E* (1) as 7y ~> 0, We determine Fy!{E,*] and then caléulate the transform Fy{E*}
using the passing to limit and the continuity of the Fourier transform in space §’. The der-
ived fundamental solution proves to be a regular generalized function.

2. Introduction of functions E*(, £). We introduce the set of functions

EX (5 1) = E* (& t)exp (—y | & ] (2.1)

where ¥ is a positive parameter.
It can be shown that in §'

im E#*@§, ) =E¥¢E, ), y—> + 0 {(2.2)
For each basic function ¢ & =8 and any positive number € we have
et~ Em oIS htny n=| [ praf(eeanal, L=| [ prefoeina (2.3)
e ] E>e o
sinv () ¢
6 &t m=t—exp (—y £l 2H0L g e )

Let & be an arbitrary positive number. We fix o1} Since ¢« 5, it is possible to
indicate a number ¢ >0 such that

C"k ltg (4.0 ) dgds < -
Then

I< g smv(&)t e, 1 ..i..
ae§>c aSI Ve 1

We select v >0 so that the inequality

[t~ exp (o0 § (£ 0.6, ) dg e < -
R

is satisfied for v (©, vy
Then for ye (0, v

Iy {1~ exp (— 2 0)] S IEI“”dES[‘¢(E,')Iﬁt<'%‘
el °

and, consequently, taking into account (2.3}, we obtain HE* 9 — (B9 i<e,

3. Functions E,{x, t) and their majorants. Let us determine the inverse Fourier
transform

Ey (2, t) = F P [E ¥
By virtue of the absolute integrability of E,* (§, f) we have
Ev={2ﬁ"’§E*exp(—?l%—i(x,&nd&s (2, 8) == 238 + Zafy - Toky
il

Substituting for function E® its expression (2.1}, passing to spherical coordinates B, o,8,
and taking into account the integrand periodicity with respect to ¢, we obtain

Ey o — (2“(},1\, sm(NtsmB)deS dq:Sexp(-«—-ﬁH;)dﬁ

Hy=q+ z(rsmﬁ sin ¢ + 2, eos@). r= (g2 4+ "

Integration with respect to § yilelds

Ey(xyt) == — T%“)W" S sin (Ntslne)dﬂs (H;? -+ HY do (3.1
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where function Ha(e, 8; r, 23) differs from H, only by the sign at zjcos 8.
Agsuming that the inequality

r0 (3.2)

holds, we transform formula {3.1) in two ways.
First, we substitute integration over the circle [z |==1 in the plane of the complex
variable g for integration with respect to @. Then

/3

E, = 0(t)i S sin (V¢ sin 6) o S (ZE‘+Z{1)dz

4T3NT 8in 6
J2f=1

Z)(Z;xrvl)=zz+2[?'+i(—-1)jx]z—1; i=0,1, \"=—-?— n*—:?—cbge

rsinB ’

Calculation of the internal integral using the theory of residues yields

e
Ey=— 8 (1) S sm(l\/tsme)( 1 + 1 )dﬂ (3.3)

Py -
2a2Nr sin 6 Z5— 2%y 7y — 2g)

where 2y, 23 and 2z, z3 are pairs of roots of equations
Zo (2, %, 7)) = 0, Z, (3 x, V) =0
respectively, and |z, |<<1 and |3z | <1,
We introduce the notation
A =1+‘V’2—K2,B=2u‘7’

Then for roots 2 and 3; we have
zj=—y —i(— 1) % + (A2 -{—B’)‘/cexp{-é— (—1y x {arctgé— + —g—(i «—-sgnA)}}

and similar expressions but with the opposite sign at the term (4% + B®'Ys for roots 1z, and
Zg.

Substituting these expressions for roots 3z; into (3.3) and passing to integration with
respect to gy == sin @, after simple transformations, we obtain

Voo | . d (3.4)
E,,(x,t):-—m § H (u)sin varf':‘;?
H(u) =P 1(P+ Ky, K@) =u+ (v’ — z) /=z|*
P(u)= (K*+ L) L) =2z |z 2V

Let us now transform formula {3.1) in another way. Substituting the variable T = sing
for the variable of integration ¢ , we obtain

n)2 1

i0 (t * sin (V2 sin 8) . RN ‘e dv (3.5)

Ey(z,t)= — z:nazv)r S g 29 X Sll(f %~+~w)‘+(1+u+w)ll——————w_ﬂ >
Y s

Taking into account the inequality
IsFx+i' | >y
we conclude on the basis of the last formula that
1By (2,8) | < @aly) ™, r#0,y5=0
i.e. Ey(z,1) are bounded locally integrable functions when y 0 and condition (3.2) are
satisfied.

Let us transform formula (3.5). Carrying in it integration with respect to 7% for in-
stance, using the theory of residues, we finally obtain

n/e
a (1) § sin (Nt sin 0)

Ey(z,t)= 4n3NT sin 8

{11 — (e — iy PP [ —(—n—iy'))ydd (3.6)



Fundamental solution for the operator of internal waves 195

where the branch of root V'l — @ has been chosen as follows: a slit has been affected in
the ©-plane between points @= —1 and ® =1, and it assumed that

V1i—w*=V2 when 0o=1

It can be shown that functions E,(z,t) have a local integrable majorant.
Let us, first, assume that ¢ >]zg|. Then, taking into account that for real a and b

[a+ i) >]a)”
we obtain from (3.6)

b nie
8

4 . 1 4 . T ¢
[E, (2. )< 5 § [1— x4 y2[ 7 d0 = 55 § Iz [25in? @ + y2 — g2/ snnedegm
Let now y<|z3]. We split the integration interval with respect to 6 in formulas (3.5}
and (3.6) in three intervals [4 4,], where [j=0,1,25h=01I3= n/2, i, = arcsin my, I = arcsin m,
= Vzf —v%|z|, mg=|zs|/|z| , and represent the respective integrals as the sum of three in-
tegrals J,,J,, and J3. Let us estimate each of them.
For estimating integrals J, and J, we use formula (3.6). We have
2 my
t udu t ¢
e 2gin2 0y~ —_— (1 — m2)Y =
| < OS(J:3 v — |z [?sin2 §)~"* sin 0 d6 < 7] (1 —my?) ’S} Var— = 2 my < o
/2 1

t . . ¢ oy ¢
75| < 5 S | 248 — % — |z [25in? 8™/ 5in 0 0 < T"II.I-S [(u? — mg) (1 — u®)]™Y* u du = e

A me
and for estimating integral J, we use formula (3.5); then

A 1

¢ 2rsin 0 dv t N , t

;J,|<WSdBS 7 ﬁ':m[(l—mlﬂ)/t_(i—m22)1/=]<m
I -1

From the derived estimates we obtain for functions E, (z, 1) the majorant
| £, (x, ) | < Ctlr, € = const (3.7)
which is valid for all >0 and all =z that satisfy condition (3.2).

4. Passage to limit in §’as y— +0. Let us prove that the sought fundamental solu-
tion of the operator N, which is the limit of functions E,(z,t) as y~—> 40 in the §' space,
can be defined by formula

1
E@t)=— 71—% 5 [(u? — x52/| 2 [?) (1 — u?)}-Vesin Ntu du (4.1)

Joesl/ focl

For this it is sufficient to prove that the sequence of functions ZE,(z,?) converges to
function E(r,¢) almost everywhere,-as y-—- -+0,

If the indicated convergence takes place, then, taking into account the presence in func-
tions Ey (z,t) of the locally integrable majorant, it is possible to apply for any basic func-

tion ¢ (z,f) & § the Lebesgue theorem on the passing to limit in the integrand, according to
which

lim)S Ey (@, t) 9z, 1) dxdt=§ E(z.t) 9 (z, t) dzdt
¥—++0 Re 4

This equality by virtue of the local integrability of functions £E,(z,t) and E (*,t) means
that function E (%, t) is the limit of functions ZEy(z,?) in the space §', as p— 40,
We shall show that functions E, (z,1 and £ (s, 1) converge almost everywhere. We assume z
and ¢ to be fixed with reg#0, and only consider values of y that are smaller than |z /Y 2.
Let us estimate |E,(z,2) — E(z,?)|. Using formula (3.4) we obtain

sin Ntu

7 _V_E ' vz sin Ntu
IEV——EI 4”2Nl’|{|SH(M)V1 du|+|S[H(u)_Vus-—-zg/[:clg]yl—u’ dul} (4.2)
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We represent the integral over the interval [0, m,] as the sum of three integrals J,, J;,
and Js » respectively, over the intervals [0, m (1 — )l [m (1 — ), m}, and [my, my), where W
is the positive number smaller than unity, selected below, and shall estimate each integral
separately.
When estimating integral J, we take into account that in the integration interval the
inequalities
|HISIKI? (P — K< 2| L] K<
VZmg |z m® 2ny —md) ™ VT =utr <
dlz| @y — 0 o 2y VT =2

are satisfied, and by virtue of these

ms
[T <V g (m] g )2 V12 — )~ S Isin Ntu|du << VE N2 |z 1 (2m — )™z [ 1y (4.3)
0
Note that in 'the case of integral J;

(B LPHP — KPS @K =27 (m2 — ut)~s
from which
my
FALS -,mt—zr S u (my — w7 du << @) Protrttmy () < @) renor1 () (4.4)
my(1—m)

For estimating integral Js we use the first of the previously derived inequalities for
Jy . We obtain

t . o t
1761 < gy (1 — mat)* — (1 = mP1 < g ¥ (4.5)

We represent the integral in (4.2) over the interval ([m,,1] in the form of the sum of in-
tegrals J; and Jy; over the intervals [ms, my+my] and {m, + m,, 1] , respectively, where M, is
the positive number smaller than unity, selected below.

We estimate integral J, taking into account the inequalities

|H| S V2P VKM <V (0 — m)™"
We obtain

ma+n.
t ' L ¢ — ¢ —
1W< 72 S u (u? — my?) e du < ;gVanmz+nz‘<~nanz (4.6)

msa

When considering integral Jg we use the inequalities

1 2y
@ —m2) >m, |Ki>nd, P02 |LIST Ry, [K1<2
by virtue of which we successively have
A = VI = mt) < | (P + K @ — mg)h — VTP
27y (P K) (K — 92| 2 |[?) — 2P2 | =
277y (8Ly? + 2% | 2 [3P) <
Ty (1292 2 |72 - 2 | 2 T TS e |2y
from which
1
s < 7@y s |20 tyt S u (t —ut) ™ du < @)V nye 2 [y 4.7
Mot

Assume now that (z,¢) is a fixed point in the Euclidean space R! whose coordinates satisfy
only the condition zg %0, being otherwise arbitrary; let also & be an arbitrary positive
number. Then, by virtue of (4.4) and (4.6), it is possible to find numbers 7m; and M. such
that for any ve(0,]z;]|/ Y3 the inequality

FTs |+ 1V < el2 (4.8)

is satisfied.
By virtue of estimates (4.3), (4.5), and (4.7) it is possible to indicate for these num-
bers 1m; and 1, such Yo that the inequality

[ Jol +1Js1+1Js] <e/2, Vye [0, yo] (4.9)
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is satisfied.
From (4.8), (4.9), and (4.4) follows that

[ N Fizx &
F) &

(r l< ¢
1 £ \& 1) z, i< ¢

Yv = 10, v,
y VY & Yo

which shows that as y— + 0 the sequence of functions Ev (z, t) converges to E (z, 1) almost
everywhere

5. The hydrodynamic meaning of the fundamental solution. It follows from (4.1)
that the derived fundamental solution of the operator of internal waves has the following
properties:

E@ =280 —0 for t<0

OF (z, 1) - 1
at 4nfx|

E (z,t)—0, for t—+0 in D'(R%

(D' is the space of generalized Sobolev— Schwartz functions which enable us to establish, with
allowance for Eq. (1.2), clearly the hydrodynamic meaning of function Z (z,t)).

Consider a continuocusly stratified fluid unbounded in all directions at rest at < 0

whose density pg (z3) is distributed in conformity with the law described in Sect.l. Particles
of the fluid are assumed to acquire at instant of time ¢t =0 velocities defined by vector

..... I I T

v M s Sre
V\w,vj whose components along axes i, &y, 3 are

1
dr|x

Ta¥3

Tarile] 168 (z1)-sgnae-sgna,, ve (2, 0)=—

v1(z, 0) =?,% —Ygsgna, -8 (xe) -sgnay, v2(z,0)=

This results in that at ¢ > ( internal waves begin to propagate in the fluid. This manifests
itself in particular in that equal density surfaces {isopycs) cease to be horizontal planes.

In the linear theory and the Boussinesq approximation function E (z,f) determines the
isopyc's displacement at point z and instant of time f{, while 9E (z, t)/dt determines the vert-
ical velocity component vy (x,¢) ©of the fluid.

Using formula (4.1) we can observe the properties of internal waves at large dimension-
less times Nt. Using conventional methods we derive from (4.1) for Nt—> oo the asymptotic
formula

. 1 sin (Nt zz|/| z | - Yom) _ - 1
Etzt)= (Zn)‘/wn/?v‘:[ AEYED -+ sin (Nt —Yam) ((Nt)‘lﬂ (5.1)

which implies that we have a superposition of two types of waves.

First, there are standlng waves defined hu the second term in brackets. These waves are

axially symmetric of infinite length and a frequency equal to the Brent—Viaisial frequency
N, and with an amplitude decreasing with time as 1/V1W

Then there are progressing waves defined by the first term in brac
These waves are also axially symmetric. Their surfaces of equal phase are conic surfaces
lz3 ]/ |z | = const whose angular velocity is 23/(rt) which decreases with time; at a fixed in-
stant of time the maximum of its absolute value lies near the vertical .z -axis, and the sign
of its angular velocity coincides with the sign of 3. With increasing time the number of
such conic waves increases and their angular length correspondingly decreases.

These properties of waves are in accord with published laboratory experiments /7/ on in-
ducing internal waves in a vessel containing linearly stratified fluid by imparting an initial
velocity to fluid particles by a rapid movement over a short distance of a solid body of di-
mensions that are small in comparison with those of the vessel.

The amplitude of progressing waves decreases in the course of time as 1/V1W.
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